Churn Prediction

April 18, 2020

0.0.1 Telco Churn Prediction (Part 1 of 2)

Telco is a fictional telecommunication company which provides home phone and Internet services. The dataset clearly indicates the status of each customer in the Churn column. Our goal is to train a model to predict customer churn using the Telco dataset. The dataset description indicates that churn refers to the customer leaving within the last month. The first part of the solution focuses on data visualization and exploration. The second part dives into the predictive modeling.

```
In [1]: # load required libraries
```

```
import pandas as pd
        import seaborn as sns
        import matplotlib.pyplot as plt
        # used for formatting the PDF
        from IPython.display import display, Latex
In [2]: # import the data as a DataFrame
        data = pd.read_csv('Telco-Customer-Churn.csv')
        # let's take a look at the first row
        data.iloc[0]
Out[2]: customerID
                                   7590-VHVEG
        gender
                                       Female
                                            0
        SeniorCitizen
        Partner
                                          Yes
        Dependents
                                           No
        tenure
                                            1
        PhoneService
                                           No
        MultipleLines
                            No phone service
        InternetService
                                          DSL
        OnlineSecurity
                                           No
        OnlineBackup
                                          Yes
        DeviceProtection
                                           No
        TechSupport
                                           No
        StreamingTV
                                           No
        StreamingMovies
                                           No
        Contract
                              Month-to-month
```

PaperlessBilling	Yes
PaymentMethod	Electronic check
MonthlyCharges	29.85
TotalCharges	29.85
Churn	No
Name: O, dtype: obj	ect

Inspecting the Dataset This dataset is fairly clean with no missing entries. There is a total of 7043 observations. Around 27% of the customers churned.

<pre>In [6]: data.info()</pre>							
<class 'pandas.core.frame.dataframe'=""></class>							
RangeIndex: 7043 entries, 0 to 7042							
Data columns (total	columns (total 21 columns):						
customerID	7043 non-null object						
gender	7043 non-null object						
SeniorCitizen	7043 non-null int64						
Partner	7043 non-null object						
Dependents	7043 non-null object						
tenure	7043 non-null int64						
PhoneService	7043 non-null object						
MultipleLines	7043 non-null object						
InternetService	7043 non-null object						
OnlineSecurity	7043 non-null object						
OnlineBackup	7043 non-null object						
DeviceProtection	7043 non-null object						
TechSupport	7043 non-null object						
StreamingTV	7043 non-null object						
StreamingMovies	7043 non-null object						
Contract	7043 non-null object						
PaperlessBilling	7043 non-null object						
PaymentMethod	7043 non-null object						
MonthlyCharges	7043 non-null float64						
TotalCharges	7043 non-null object						
Churn	7043 non-null object						
<pre>dtypes: float64(1),</pre>	int64(2), object(18)						
memory usage: 1.1+ MB							

Out[6]:		SeniorCitizen	tenure	MonthlyCharges
	count	7043.000000	7043.000000	7043.000000
	mean	0.162147	32.371149	64.761692
	std	0.368612	24.559481	30.090047
	min	0.00000	0.000000	18.250000
	25%	0.00000	9.00000	35.500000
	50%	0.00000	29.000000	70.350000
	75%	0.00000	55.000000	89.850000
	max	1.000000	72.000000	118.750000

Visualizing and Inspecting the Dataset We can use the seaborn library to visualize and inspect the dataset.

We begin by examining the continuous variables tenure and MonthlyCharges. Since TotalCharges can be approxiamated as a function of these two variables, we can exclude it from the plot.

The plots below show that:

- churned clients pay higher monthly charges than unchurned clients
- as tenure increases, the porportion of churned clients decrease

Out[8]: <seaborn.axisgrid.PairGrid at 0x7f89acce2c88>

We can also draw some boxplots to illustrate the quantile differences between customers who churned and customers who did not churn. Understanding this relationship can help us pick the right promotions to incentive customers into staying.

```
In [10]: # this helps organize our plots and keep them in the same figure
    fig, axs = plt.subplots(ncols=2)
```

sns.boxplot(x='Churn', y='tenure', data=data, ax=axs[0])
sns.boxplot(x='Churn', y='MonthlyCharges', data=data, ax=axs[1])

```
# this prevents plots from overlapping
plt.tight_layout()
```


 \mathbf{s}

Next, we examine the categorical variables. From these plots, we see that: **Demographics**:

- no difference in churn porportions between gender
- higher porportion of churn amongst SeniorCitizens, customers with no Partners and no Dependents

Services:

• higher porportion of churn amongst customers with Fiber optic, no OnlineSecurity, no OnlineBackup, no DeviceProtection, no TechSupport

Billing:

• higher porportion of churn for customers on a month-to-month plan, Paperless Billing and who pay by ElectronicCheck

This information tells us a lot about Telco's products and customers. We see that customers in certain demographics have much higher rates of churn than others. Customers less reliant on Telco's other services also seem to churn more. Surprisingly, customers that pay by electronic cheques see a much higher churn rate.

Certain services, such as Fiber optic, also sees a higher churn rate. It would be worthwhile to investigate to understand *why* this is the case, in particular if there are any gaps in these offerings.

```
In [12]: '''
         this helps organize our plots and keep them in the same figure
             columns: List[str] - each column is its own chart
             title: str - title is used as the title of each chart
         function only works for 3 or more columns
         111
         def plot_categoricals(columns, title):
             fig, axs = plt.subplots(ncols=2, nrows=int(len(columns) / 2) + len(columns) % 2)
             fig.set_size_inches(15, 15)
             row = col = 0
             for column in columns:
                 plot_title = '{}: {}'.format(title, column)
                 sns.countplot(x=column, hue="Churn",
                               data=data, ax=axs[row][col]).set_title(plot_title)
                 if col == 1:
                     col = 0
                     row += 1
                 else:
                     col += 1
             # this prevents plots from overlapping
             plt.tight_layout()
```

dscrashcourse.com

dscrashcourse.com

dscrashcourse.com

###